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Free volume theories of the glass transition 
and the special case of metallic glasses 
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School of Engineering and Applied Sciences, University of Sussex, Falmer, Brighton, 
Sussex, UK 

Theories based on the concepts of free volume and the existence of holes in liquids are 
briefly reviewed. Available experimental data on the changes in specific heat and thermal 
expansion at the glass transition temperature and the temperature dependence of 
viscosity near transition have been utilized to evaluate the hole formation energy and 
critical hole size in palladium-, platinum- and gold-based metallic glasses. It has been 
found that in conformity with theoretical predictions, transport in metallic glasses occurs 
by the movement of highly ionized atoms. A linear relationship exists between the hole 
formation energy and glass transition temperature of metallic glasses. It is suggested that 
a high energy of hole formation is a necessary criterion for easy vitrification of metallic 
melts. The behaviour of vacancies in crystalline metals is compared with the behaviour 
of holes in metallic glasses. 

1. Introduction 
Cohen and Turnbull [ 1] predicted that liquids of 
even the simplest structure would go through a 
glass transition if sufficiently undercooled by very 
rapid quenching. The growing literature on the 
production of metallic glasses amply justifies the 
prediction [2]. The existence of a reversible glass 
transition in a metallic glass was first established 
in a classic investigation by Chen and Turnbull 
[3]. They measured the specific heat of an amor- 
phous Auo. 77Geo. 136 5io.094 a l loy  through the glass 
transition region and detected the anticipated 
abrupt variation in specific heat over a narrow 
temperature range. Several such studies have since 
been conducted by Chen and co-workers [4-9]  
who have determined the changes in specific heat, 
thermal expansion coefficients and elastic con- 
stants for several palladium-and platinum-based 
metallic glasses. Cohen and Turnbull's original 
prediction [1] was based on the concept of free 
volume. 

In a recent study [10], we arrived at the energy 
for hole formation in metallic glasses from their 
known viscous behaviour. It was assumed that the 

free volume in the glass results from the formation 
of holes as suggested by Eyring and associates 
[11], who were interested in organic monomers 
and polymers. The present sequel attempts to 
show, more generally, that the available data on 
viscosity, specific heat, thermal expansion coef- 
ficients and diffusion coefficients are consistent 
with Hirai and Eyring's hole theory of the liquid 
state [12, 13]. Estimates are made of a critical 
hole size in metallic glasses, that is, the smallest 
hole size which will permit atomic transport. We 
contend that the hole and free volume theories 
which have been so successful in describing the 
behaviour of polymeric glasses are equally capable 
of explaining the behaviour of metallic glasses. 
2. Free volume and atomic transport in 

liquids 
The transition of an undercooled liquid to glass 
with decrease in temperature is accompanied by 
discontinuous changes in thermal expansion, 
specific heat, compressibility and viscosity. It 
corresponds to a change in slope in a plot of 
specific volume as a function of temperature. 
Batschinski [14] suggested, as early as 1913, that 
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the product of shear viscosity, rT, and the total 
thermal expansion of the liquid, (V- -  V0), where 
V is the volume of the material at any temperature 
T and V0 its volume at a reference temperature 
To, is a constant; 

~ ( V -  Vo) = K (1) 

More recently,however, Doolittle [ 15, 16] showed 
that the shear viscosities of simple hydrocarbons 
are better represented by a non-linear expression 
of the form 

r/ = A exp B[Vo/(V-- V0)] (2) 

where A and B are empirical constants, the latter 
of the order of unity. Vo was estimated from 
either the density or from the thermal expansion 
characteristics of the liquid, To being equated to 
zero absolute temperature. 

The above-mentioned observations resulted in 
the rather vaguely defined but operationally very 
useful concept of free volume. The difference 
between the properties of  liquids and solids is 
generally thought to have its origin in the large 
free volume of liquids. The term "free volume" 
has been used in the literature to denote three 
distinct concepts [17, 18]: (1) The empty volume 
per mole, which is determined by subtracting the 
notional volume per mole of a substance, as calcul- 
ated from the size (van der Waals) of individual 

molecules, from the measured volume per mole 
at any given temperature. The van der Waals 
volume is assumed to be independent of tempera- 
ture. (2) The excess of measured volume per mole 
at the temperature of interest over the molar 
volume of the liquid at zero absolute temperature. 
This last can be estimated by extrapolation from 
the variation with temperature of either the 
density or the thermal expansion of the liquid, as 
was done by Doolittle [15, 16], with the implied 
assumption that the liquid is nonassociated and 
does not undergo any phase changes on cooling to 

z e r o  absolute temperature. (3) A third estimate 
involves the calculation of "fluctuation volume" 
which is the volume swept by the centre of  gravity 
of  a molecule in the course of its thermal vibration. 
In the present paper, the second interpretation 
listed above, viz. the "expansion volume", is 
considered to be identical with the free volume 
and is shown schematically in Fig. 1. 

The free volume at any given temperature is 
often expressed as a fraction of the total volume 
at zero absolute temperature. Thus, the relative 
free volume fT = (V--  Vo)/Vo; Equation 2 can 
therefore be rewritten as 

r/ = A exp (B/fT) (3) 

The development of Equation 3, the Doolittle 
equation, was followed by the observation by 

Figure 1 Schematic representation of the tempera- 
ture dependence of free volume (a) in a liquid 
exhibiting no glass transition, and (b) in a liquid 
undergoing glass transition at Tg. V 0 is the specific 
volume of the liquid at absolute zero temperature. 
Only change in free volume is considered; thermal 
expansion due to thermal vibration is neglected. 
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Williams et aL [19] that the ratio of relaxation 
times at any temperature T to the value at the 
glass transition temperature Tg can be expressed 
by a universal equation capable of explaining the 
viscous behaviour of polymeric and inorganic 
materials irrespective of their molecular consti- 
tution. By comparing their equation with the 
Doolittle equation, Williams et al. [19] observed 
that the relative free volume for a variety of these 
materials is ~ 0.025 at the glass transition tempera- 
ture. Fox and Flory [20] had earlier suggested 
that the glass transition in undercooled liquids is 
brought about by the fall of the relative free 
volume to a very small but constant value. 

Theoretical basis for the empirical Doolittle 
equation was provided by Bueche [21] and Cohen 
and Turnbull [1, 22]. Bueche assumed that mol- 
ecular vibrations in a liquid occasionally open up 
voids large enough to permit a molecular jump. 
The creation of a void requires the cooperative 
movement or vibration of a number of molecules. 
At high densities and low temperatures, the 
formation of the required voids becomes in- 
creasingly difficult and the undercooled liquid 
exhibits a glass transition. Cohen and Turnbull 
[1], on the other hand, started with the assump- 
tion that atomic transport in a hard-sphere fluid 
becomes possible only when a void of volume 
greater than a critical value v* is formed. Further, 
the total free volume Nvf,  where vf is the average 
free volume per atom and N the Avogadro number, 
was assumed to be partitioned randomly. The 
critical void was postulated to arise from a redis- 
tribution of free volume without attendant 
changes in energy at constant total volume. Below 
the glass transition temperature the free volume is 
nearly zero and temperature independent. At 
T < Tg no density fluctuations capable of redis- 
tributing the free volume can arise. On increasing 
the temperature, a rapid increase in free volume 
results above Tg and is redistributed over the 
entire sample. Cohen and Turnbull [1] related 
the self-diffusion constant, D, to the probability 
p(v)  of finding a free volume between v and v + dv 
by the following equation 

D = gu �9 a ( v ) p ( v ) d v  (4) 

where gis a geometric factor with a magnitude of ~. 
u is the gas kinetic velocity given by (3kT /m)  1/2 , 
where k is the Boltzmann constant and m is the 
mass of the molecule. The probability p(v*)  of 
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finding a free volume exceeding v* was obtained 
by maximizing the number of ways of distributing 
the free volume. Such a procedure ultimately 
results in the following expression for D: 

D = ~ a*u exp 3' vf (5) 

where a* is approximately equal to the molecular 
diameter and 3' is an overlap factor of the order 
of �89 to unity, i.e. a factor to correct for the over- 
lap of adjacent voids. This analysis was further 
refined by TumbuU and Cohen [22] to include 
the consequences of back-scattering. Equation (5) 
was shown to be valid in the high density regime 
where v* >> vf/3". Several reviews of this work are 
now available [23-25] .  

According to Frenkel [26], and Eyring and 
co-workers [11-13] ,  the thermal expansion coef- 
ficient of liquids represents primarily the creation 
of additional free volume with rising temperature 
by way of creation of "holes". These hole theories 
are discussed in the following section. 

3. Hole theory of liquids 
The spatial distribution of the free volume of a 
liquid is partly discontinuous and partly accommo- 
dated by an increase in the minimum interatomic 
spacing. In the original hole theories of liquids, the 
latter is neglected and the discontinuous increase 
is attributed entirely to the formation of holes. 
While one can easily visualize holes as lattice 
vacancies and interstitial spaces in the case of 
crystalline solids, as first pointed out by Frenkel 
[26], the distinction between interstices and 
vacancies is less clear in the case of liquids. Conse- 
quently, holes have to be treated simply as 
abnormal gaps between atoms, gaps which arise 
and collapse spontaneously. 

Treating holes as cavity fluctuations in a 
continuous medium, Frenkel [26] attempted to 
obtain an average size and distribution of sizes of 
cavities and the energy for the formation of a 
cavity of average size. The result indicated that 
the formation energy of an average cavity is equal 
to kT, where k is the Boltzmann constant, a value 
in complete disagreement with the experimental 
data on temperature dependence of viscosity. 
Frenkel [26] therefore concluded that it it necess- 
ary to modify his assumption of a continuous size 
distribution and to postulate, arbitrarily, that only 
holes exceeding a critical size and requiring a 
minimum amount of work for their formation 



exist in the liquid. He further argued that the size 
distribution of holes must be quite narrow; in 
effect he proposed that all holes have virtually the 
same size. 

Eyring and associates [11-13] start with the 
assumption that a liquid can be considered to 
possess a quasi-crystalline lattice and contain 
vacant lattice sites which are treated as holes. Each 
hole is characterized by a constant volume Vh and 
a temperature4ndependent energy of formation, 
%, at constant pressure. These assumptions are 
akin to those made by Frenkel. However, import- 
ant differences arise between Hirai and Eyring's 
treatment and that of Frenkel owing to differences 
in the assumed size for the holes. Frenkel [26] 
considered the holes to be atom-sized while Hirai 
and Eyring [12, 13] consider them to be much 
smaller. The assumed hole size can have noticeable 
influence on the free energy of the liquid and on 
the proposed number of holes in it. 

The equilibrium number of holes, Nh, is de- 
termined by maximizing the decrease in free 
energy associated with the introduction of holes. 
The first step is, therefore, to arrive at an ex- 
pression for the change in free energy of the 
liquid, AG, which is given by 

AG = AE + PAV-- TAS (6) 

AE represents the change in internal energy of the 
liquid due to introduction of Nh holes and its 
magnitude is Nheh. The work of expansion caused 
by an increase in volume of Nhvh is presented by 
PAV. The change in entropy AS at temperature T 
arises from two different sources: the vibrational 
entropy contribution ASh due to the formation 
of the hole, and ASm, the change in entropy due 
to the mixing of Nh holes and Na atoms. The 
contribution ASh is considered to be small and 
the total change AS is dominated by ASm [12, 
13]. Two different methods have been used in the 
literature [26, 12, 13]. Two different methods 
have been used in the literature [26, 12, 13] for 
evaluating AS and consequently for the evaluation 
of N h. The first of these assumes ideal mixing of 
atoms and atom-sized holes and the change in 
entropy is represented by 

AS= --k{~aln [Nh/(Nh+Na) ] 

[JVh/(Wh +Na)] / (7) + in 
} 

where N a is the number of atoms, each having a 

volume va considered to be independent of tem- 
rature. It is to be emphasized that the ideal mixing 
approximation assumes that the two species being 
mixed are of the same size, i.e. Va = Vh. Under 
these conditions Equation 7 can be rewritten as 

[ fT lnfT+ln(1--fT)](8) AS = --k 1 --fT 

in terms of the relative free volume fT. Substi- 
tuting the value of S from Equation 7 into Equation 
6 and putting ~AG/~Nh = 0 yields the result 

Nh = Na exp(Y -eh-Pvh ) 
\ kT (9) 

Analyses of the transport properties of liquid 
metals [ 1 ] have indicated that the volume of a hole, 
va, in these liquids is in fact far smaller than the 
volume per atom (or molecule), Va, in the cor- 
responding liquid at atmospheric pressure and 
zero absolute temperature. Accordingly, use of 
Equation 7 has been discarded and an alternative 
method employed for estimating the change in 
entropy of mixing holes of volume Vh and atoms 
of volume va [ 12, 13 ]. 

Furthermore, thermodynamic investigations on 
solutions of polymers have emphasized the need 
for the development of an alternative expression 
for the entropy of mixing capable of taking into 
consideration substantial differences in the sizes of 
solvent and solute molecules [17, 27]. Conse- 
quently, it has been recognized that the change in 
entropy on mixing of molecules of dissimilar sizes 
is better represented by the expression 

NB 

where N A and N B are the number of molecules of 
species A and B respectively, and CA and q~B are 
their volume fractions. The expression is similar to 
Equation 7 except that mole fractions are replaced 
by volume fractions in the logarithmic terms. 
Equation 10 has been derived from lattice models 
of the liquid state [27], statistical thermodynamic 
arguments [28] and from a consideration of free 
volumes [29]. 

When AS, calculated by an equation of the 
form of Equation 10, is substituted into Equation 
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6, the following expression for the equilibrium 
number of holes is obtained: 

NaVaexp(7-eh--Pvh) (11) Nh-- Vh kT 
In what follows, we shall restrict ourselves to 
atomic, as distinct from molecular melts. We shall 
begin by considering melts consisting of only one 
species of atoms of volume Va. 

On the basis of Equation 11, the total volume 
V of the liquid, which is the sum of the volume 
of holes and atoms, can be expressed as 

V= Nava[l +exp (yeh--Pvh (12) 

The above equation was utilized by Hirai and 
Eyring [121 to obtain expressions for the com- 
pressibily, /3, and volume thermal expansion, a, 
of liquids, using the well known identities 

=- g \ /3 = - V 5-i T 

The result, in each case, was expressed as the sum 
of two terms: 

a =  a o + a  h 

where 

' 

and /3 = /30 +/3h (13) 

and / 3 0 -  

represent the expansion coefficient and com- 
pressibility of the "occupied volume", i.e. the 
component of the change of a and t3 which is due 
to variation in interatomic spacing. The second 
terms in the expressions for a and/3 represent the 
contributions due to the changing number of holes 
and are given by 

% = exp \ kT ] (14a) 

and 

/3h = Vh e x p  ~ (14b) 

Hirai and Eyring [12] further consider the liquid 
state to be characterized by the equilibrium 
between holes and phonons. The disappearance of 
a hole, for example, creates elastic strain which 
2492 

propagates with the velocity of an elastic wave. 
The excess energy is taken up by the changed 
lattice. The creation of Nh holes increases the 
internal energy of the liquid and the change in 
number of holes with temperature entails an ad- 
ditional heat capacity. On this assumption, the 
total specific heat of the liquid can likewise be 
separated into two 

and/3. Therefore, 

Cp 

where @1 is the 
brations and Cph 

components, as was done for 

= Cpl -}- CDh 

contribution from lattice vi- 
is due to changes in the 

equilibrium number of holes. The latter is given on 
a molar basis by 

(ONh\ 
Cph = Lh~--~)],_ _ (15) 

where Eh is the energy of one mole of holes. 
Differentiating Equation 11 and substituting in 
Equation 15 gives 

Va EN 2 
exp~ -R-T 7 (16) 

At atmospheric pressure the PAV term in the 
above expression can be neglected. 

When a liquid is progressively undercooled and 
transforms to a glass, a particular number of holes 
is frozen in. Their number (per mole) is given by 
Equation 11, at the glass transition temperature 
Tg. The exact value of Tg, and hence the exact 
concentration of the frozen4n holes, depends on 
the rate at which the liquid is cooled through the 
critical temperature range. With this proviso, it is 
clear that the thermal expansion coefficient, a, the 
compressibility /3, and the specific heat Cp, all 
change discontinuously at Tg because the steady 
variation of Nh with T which determines %,/3h 
and Cph is abruptly arrested at this temperature. 
We will denote these abrupt changes by Aa, A/3, 
and ACp. 

In what follows, we shall adopt the hole theory 
with Vh :/: va but shall link it in various ways with 
the most general free-volume model. 

4. Estimation of hole formation energies 
and hole sizes in metallic glasses 

As can be seen from the preceding discussion, in 
principle, a knowledge of the abrupt changes at 
Tg in thermal expansion coefficient and compress- 
ibility can be utilized to obtain the hole formation 



energy and size. However, since compressibilities 
of metallic glasses are known only below Tg and 
therefore &3 is not known, the hole size has 
instead to be estimated from a knowledge of 
changes in specific heat, ACp, and thermal ex- 
pansion, Aa. For this purpose, Equations 14 and 
16 above are employed. Chen and co-workers 
have reported [ 4 - 9 ]  densities and changes in 
thermal expansion and specific heats at Tg for 
a number of metallic glasses based on palladium 
and platinum. To illustrate the procedure, data 
from one alloy from each series (viz., Pd0.48 
Nio. 32 Po. 2 and Pto. s2s Nio. 22s Po. 2s) are utilized. 
Equation 14a can be rewritten for atmospheric 
pressure (P ~ 0) and T = Tg as 

= TgAa = (~--~-g)exp --Eh (17) r g ~ h  

and solved graphically for (Eh/RTg). Equation 17 
is plotted in Fig. 2 in the form of the variation 
of TgAo~ as a function of (Eh/RTg). For a given 
metallic glass produced by rapid solidification at 
a given cooling rate, TgA~ has a fixed value. As 
can be seen from Fig. 2, two values of (Eh/RTg) 
are in general possible for a given value of TgAa. 
One of these has a very low value and is not 
physically meaningful since energies for hole 
formation in liquid metals are known to be several 
kflocalories per mole [11, 26]. Hence, only the 
higher of the two values is acceptable and is 
recorded for the alloys in Fig. 2 and Table I. 

The hole volume vh can then be obtained with 
the aid of Equation 16 and the known values of 
(Eh/RTg) and Va. Ideally, Va is the volume per 
atom in the liquid at zero absolute temperature 
where no holes would be present in the liquid. Va 
has therefore to be calculated by extrapolating the 
volume of a mole of liquid to zero absolute tem- 
perature with the aid of the known coefficient of 
thermal expansion and a measured density. Even 
though the thermal expansion coefficient is 
known, densities of the liquid alloys under con- 
sideration are not available. Therefore, to a first 
approximation, the value of Va was obtained from 
the room-temperature values of the densities of 
amorphous alloys. The hole volumes obtained with 
these assumptions are shown in Table II. 

5. Hole formation energy and viscous 
behaviour 

Recently we demonstrated that the viscosity of 
undercooled metallic liquids (Auo.77Geoaa6Siom4 
and Pdo. 77s Cuo. 06 Sio. 16s) can be represented as a 
function of temperature by the Doolittle equation 
(Equation 3) [10]. For this purpose, the relative 
free volume fT was assumed to be given by 

V -- Vo NhVh 
; r  - - -  ( 1 8 )  

Vo Vo 

The equilibrium number of holes at a given tem- 
perature T was assumed to be given by Equation 9 
of the present paper. A direct substitution of 
Equation 18 into Equation 3 should, in con- 
junction with experimental viscosity data, yield 
values offT at various temperatures. However, this 
approach leads to a set of non-linear simultaneous 
equations which are difficult to solve. To over- 
come the problem, a function of the type 

f r  = 1 +sin21r{ -T---TM ) (19) 
;M  rM-ro 

was proposed in the earlier paper, to approximate 
the exponential temperature dependence of fT. 
fM is the relative free volume at the melting point 
TM, and To is a temperature at which relative free 
volume goes to zero. fM was assumed to be 0.35*. 

Equation 3 was then rewritten as 

In (r~-2t= B(1/fTI--1/fT~), (20) 

where rh and ~72 are the viscosities at temperatures 
TI and /'2 respectively. Since fM is assumed to be 
0.35, f r  values given by Equation 19 are depen- 
dent only on the value of To. Further, since B is a 
constant, Equation 20 will be satisfied for all 
known values of ~7 over the experimental tempera- 
ture range only when To is chosen correctly. In 
other words, a reproducible value for B will be 
obtained from different pairs of viscosity values 
only for the correct value of To. The value of To 
was, therefore, determined by the method of 
successive approximations until a single value for 
B was obtained from arbitrarily chosen pairs of 
viscosity values at different temperatures. From 

*This value was obtained from Equation 8. As suggested by Gutzow [30], AS represents the difference in configur- 
ational entropy of a liquid and the solid in equilibrium with it and should be equal to the entropy of fusion at TM.. 
Since the entropy of fusion of many metallic liquids is ~ 2 e.u., fM should be ~ 0.35. 
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Figure 2 A plot of the theoretical TgAa product versus reduced hole energy, Eh/R Tg, Equation (17). 

this value of  To and Equation 19, values of  fT 
were calculated for a range of  temperatures.  Equa- 
tion 18 was now rewritten by substituting 

Nhq l  
f:r - - C e x p  ( - -Eh]RT)  (21) 

Vo 

with this substi tution, Equation 18 can be writ ten 

f:r exp e(A-Tt 
fM = --  k--ft-] (22) 

where e = - -Eh/RTM and A T =  TM --  T. Eh has 
determined from Equation 22 by plott ing the cal- 
culated values of  fT against (AT/T),  assuming 
fM = 0.35. Analysis of  experimental data due 

to Chen and Turnbull [4] and Chen and 

Goldstein [9] for the Auo.77Geoa36Sio.o94 and 
Pdo.77s Cu096 Sioa6s glasses by the foregoing proce- 

dure yielded values for Eh, A, B and C which are 
shown in Table I. It  can be seen that  for both  the 
alloys, fx  at Tg was ~ 0.03 and B was "~ 1.0. These 
values are akin to those obtained by Doolitt le 
[15, 16] for a number of  organic liquids. The pro- 
cedure was applied to Pdo~2 Sioas alloy glass with 
the generalized assumptions that  at Tg, f r  = 0.03, 
rl = 1013P and B = 1. The values for Eh, A and C 
thus obtained are also included in Table I. 

The earlier analysis [10] can be further im- 
proved to obtain a physical interpretat ion for the 
constant B, to eliminate certain unnecessary or 

TAB LE I Hole formation energies in metallic glasses* 

Alloy Tg(K) A B C B' fTg fM f~rg fTM Aa E h 
[3,5,7] X 103 • 103 • 103 X 103 X 106 (kcal 

[7] mo1-1 ) 

Pdo.775Cuo.o6Sio.16 ~ 643 1.06 1.11 11.95 0.0932 45.73 350 3.83 29.42 - 7.12 
Pdo.8~Sio.18 648 0.338 1.00 15.08 0.0647 29.05 350 1.93 22.76 - 8.06 
Au0.77Geo.136Sio.o94 294 0.0127 0.90 3.05 0.2838 20.17 350 9.89 114.02 - 2.70 
Pdo.4s Nio.32 Po. 2 585 . . . . . .  3.60 - 34.5 6.55 
Pto.~, Nio.225 Po.2~ 486 . . . . . .  3.95 - 44.7 5.35 

*A, B, C fT_ and fM refer to the old analysis [ ~ . B', f~g' and f~VM refer to the present analysis. Eh is unaltered bY the 
change from the old to the new analysis. 
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incorrect assumptions and to make it consistent 
with the approach developed in the present paper. 
Since va v~ Vh, the equilibrium number of holes 
Nh has to be obtained from Equation 11 in prefer- 
ence to Equation 9. It is also no longer valid to put 
fM = 0.35 since Va V~ Vh (Va = Vh was assumed in 
arriving at Equation 8 and in the calculation offM 
in the footnote on .page 2493). It is sufficient to 
treat fM as a constant for each alloy and carry out 
the earlier analysis purely in terms of normalized 
relative free volume, i.e. fT/fM. With the assump- 
tion that Nh is given by Equation 11, the relative 
free volume can now be expressed as 

f~ _ NhVh _ NaVa Vh exp (11--Eh 
Vo Vh Vo \RT/"  

= exp (~---)--Eh. (23) 

The prime indicates that the fractional volume is 
calculated for v h =/=Va. The ratio f(r/fM is still 
given by Equation 19 and 22. This would leave the 
values of Eh and A unaltered while C becomes 
unity in Equation 21. Since Equations 19 and 22 

are still valid, the new relative free volume, f~, is 
related to the earlier relative free volume, fT, by 

f~, = ~0.35)UN (24) 

Consequently, the new value of B in Equations 3 
and 20, designated B '  in the present analysis, is 
related to B of the earlier analysis by 

B ' =  (0--.~) f~i (25) 

where f ~  is now obtained from Equation 23 in 
each case. The values obtained for B' for the 
Auo.77Geo.136Si0994 and Pde.77 s Cuo~ 6 Sio.16 s alloys 
are shown in Table I. It is important to note that 
the revised analysis leads to the same values for 
viscosity at various temperatures, and the same E h, 
as before. 

The present analysis shows that f ~  is 0.113 in 
the case of Auo. 77 Geo.136 Sio.16 s alloy and 0.029 
in the case of Pdo. 775 Cuo.o6 Sio. 165 alloy. Turnbull 
has calculated the ratio of the specific volume of 
the amorphous state to that of the crystal at 0K 
and obtains a value of 1.125 for pure gold [31]. 

This implies that f~  for gold'is 0.125 and the 
proximity of this value to 0.113 obtained for the 
gold-based alloy justifies the present analysis. The 
large difference in the values for f~  for the two 
alloys is striking. In this connection it may be 
remarked that the addition of silicon to palladium 
is known to decrease the molar volume of the 
liquid alloys by as much as 20% below the value 
derived on the asumption o f  ideal mixing ,at high 
temperatures [32]. 

To recapitulate, the sequence of calculation is 
as follows: E h is calculated from experimental 
data on viscosity with the aid of Equation 19. 
Then from Equation 23, f~  and f~_ are computed. 
Table I fists values offM and fTs (o~d analysis) and 
f ~  and fT, g (new analysis) for comparison. It will 
be seen that contrary to the long-held views of 
Fox and Flory [20] which were supported by our 
first analysis [10], the new approach does not 
indicate a constant value of f '  at the glass transi- 
tion temperature for the various glasses we have 
examined. However, it is interesting to observe 
that the ratio f(rg/f~ is roughly constant and this 
is associated with the fact that Tg/TM does not 
vary greatly from one glass to another. 

The most important result of the revised analy- 
sis, however, stems from a comparison of Equation 
3, with B = B' ,  and an expression for 77 based on 
the free volume approach due to Cohen and 
Tumbull [1]. For the purpose of this comparison 
it may be recalled that the self-diffusion coef- 
ficient D and the viscosity ~ of a liquid are related 
by the Stokes-Einstein equation 

D = -- (26) 
7? 

where k is the Boltzmann constant and a0 is the 
atomic diameter. Combining Equations 5 and 26, 
r/can be expressed as 

r/ = r/o exp (Tv*/vf) (27) 

The relative free volume fT~ of the present analysis 
and the average free volume per atom vf of Cohen 
and Turnbull's analysis [1] can be related to each 
other as follows: 

f~ _ N h ~  _ Vf (28) 
NaVa Va 

and substituting for vf from Equation 28 into 
Equation 27 we obtain 

2 4 9 5  
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Figure 3 The empirical linear relationship between calculated hole energies and corresponding glass transition 
temperatures for a variety of metallic glasses. 

{ 3'v* I (29) = 70 exp  vj; j 

A comparison of Equations 3 and 29 suggests that 
B' =(Tv*/va). The overlap factor T is generally 
taken to be unity. Hence, B '  represents the ratio 
of the volume of a critical void necessary for flow 
in a hard-sphere liquid or glass and the volume per 
atom in the liquid at zero absolute temperature 
and atmospheric pressure*. It is significant that 
the values for v*/v a obtained from the present 
analysis of the data of the two alloy glasses (0.093 
for Pdo. 775 Cuo. 06 Si0.165 and 0.284 for Auo.77 
Geo. 136Si0.o94) are of similar magnitude to those 
calculated by Cohen and Turnbull [1] from an 
analysis of diffusion data of elemental liquid 
metals (from 0.0935 for Hg to 0.72 for Ga). This 
aspect is discussed further in Section 6.2. 

6. Discussion 
6.1. Hole energy and glass transition 

temperature 
An examination of Table I shows that the energy 
for hole formation scales as the glass transition 

temperature Tg. In Fig. 3 the values of Eh are 
plotted against Tg and the best fit straight line is 
drawn through the values which have been deter- 
mined from experimental data on viscosity and 
thermal expansion. The straight line is represented 
by the equation: 

Eh = 13.83Tg -- 1400(-+290)calsmole -1. (30) 

The conclusion that Eh varies linearly as T s is not 
altogether surprising. The activation energy for 
viscous flow is composed of the energy for for- 
mation of holes and the activation energy for their 
migration. In general, the migration energy is 
assessed to be only 10 to 20% of the total activation 
energy for viscous flow [11]. To a first approxi- 
mation then, the activation energy for viscous 
flow, Evis, can hence be equated to Eh. A linear 
relationship has also been found for the variation 
of activation energy for viscous flow with respect 
to the melting point Tm in pure liquid metals [33]. 
Further, Spaepen and Turnbull [34] have shown 
that Tg/Tm is in the range 0.44 to 0.66 when both 
the temperatures are expressed in degrees Kelvin. 
Hence, the energy for hole formation can be ex- 
pected to vary in a roughly linear way with Tg. 

*As mentioned in Section 3 the hole theory assumes that the hole size is equal to the critical void size necessary for 
flow, i.e. v* = v h. 
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TABLE II Hole Volumes and Radii in Metallic Glasses 

Alloy z~Cp Density v a 
(cal deg K -a. (gcm -3) (A 3) 
mo1-1 ) [2, 7, 48] 
[3,5,381 

v h (A 3 ) vla/v a r* (A) Ionic 
radii 

from from from from from from A [36, 37] 
ACp viscosity ACp viscosity ACp viscosity 

Pdo.~TsCUo.o6Sio.~6 s 2.0 10.48 14.39 1 .69 1.34 

Pdo.82Sio.18 3.06 10.25 14.95 0.73 0.97 

Auo.~TGeo.~36Sio.o94 5.65 15,12 18.02 1.32 5.11 

Pdo.4s Nio.32 Po.2 2.50 9.83 12.84 1.16 

Pto. s2s Nio.22s Po.25 4.40 15.85 12.92 0.70 

Pd 2+ 0.80 
0.117 0.093 0.74 0.68 4+ 0.65 

to 0.55 
Cu 1+ 0.96 

0.049 0.065 0.56 0.61 2+ 0.72 
Si 1+ 0.65 

4+ 0.42 
0.073 0.284 0.68 L07 Au 1+ 1.37 

3+ 0.85 

0.090 - 0.65 - Ge 2+ 0.73 
4+ 0.44 

Ni 2+ 0.69 
0.054 - 0.55 - P 3+ 0.44 

5+ 0.35 
Pt 2+ 0.80 

4+ O.65 
to 0.55 

6.2.  Hole  size and  v o l u m e  
The values for v* lv  a in the metallic glasses at Tr and 
the hole volume zh calculated therefrom, by the 
procedures illustrated in Sections 3 and 4, are 
shown in Table II. As remarked earlier the ratio 
v* /v  a is seen to be in the range 0.05 to 0.30 for 
the glasses analysed and is of  the same order of  
magnitude as that reported by Cohen and Turnbull 
[1] for pure liquid metals. By assuming the critical 
void to be spherical in shape, Cohen and Turnbull 
calculated its radius r*. In each case, the critical 
radius r* was found to be close to the ion core 
radius corresponding to the highest valence state 
of  the metal, as is indeed appropriate to their 
initial postulate of  a hard-sphere liquid. The 
present analysis also leads to a similar conclusion. 
The Goldschmidt ionic radii for the elements in 
their various valence states that constitute the 
alloys under consideration, along with the values 
for r*, are shown in the last column of  Table II. It 
is to be remarked that there is considerable dis- 
crepancy in the values for Goldschmidt atomic 
radii quoted in the literature [35].  Where there is 
considerable doubt, a range of  values [36, 37] is 
quoted in Table II. As can be seen from the tabu- 
lated data, in all cases the calculated hole radius is 
close to the smallest ionic radius among the con- 
stituent metals, suggesting that the flow and other 
properties of  both liquids and glasses are control- 
led by the movement of  ions, rather than union- 

ized atoms, into available holes. This confirms 
with the suggestion made by Eyring [11],  and 
Cohen and Turnbull [1]. On the basis of  the 
present analysis it would appear that it is the size 
of  the metallic ions, rather than that of  the smaller 
metalloid ions, which governs the transport 
properties. 

It will be observed from Table II that the value 
for v*/Va obtained from viscosity data is always 
larger than that obtained from changes in specific 
heat at Tg. The discrepancy arises from uncer- 
tainties in the value of  ~Cp at Tg. The point is 
well illustrated by the data on Pd0. 77s Cuo. 06 Sio. 165 
glass considered here. Chen reported ACp to be 
3.2 cal (deg K tool)- a [5] and 3.86 cal (deg K tool) -1 
[6] .  In a later publication, Chen and Coleman 
reported [38] avalue of  only 2.0 cal (deg Kmol)  -1- 
fbr the same glass in the annealed state. Equation 
16, which was used to calculate 'Oh/Va, assumes 
that an equilibrium concentration of  holes is 
frozen-in at Tg. In practice, at the extremely rapid 
rates of  quenching characteristic of  the methods 
utilized in the production of  metallic glasses, a 
non-equilibrium number of  holes is frozen-in. This 
affects the value o f  LXCp recorded. On the other 
hand, the thermal expansion data were reported to 
have been obtained after stabilizing the glass and 
the viscosity data were obtained just above Tg. 
Hence the values of  v*/Va obtained from viscosity 
data are more reliable. Experimental determination 
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of changes in compressibily at Tg would be wel- 
come to allow further comparisons. 

6.3. Diffusion in metallic glasses 
Gupta et al. [39] determined the diffusion coef- 
ficient of radioactive silver in a Pd8~ Sil9 alloy glass 
in the temperature range 480 to 550 K, far below 
Tg (~ 64510. Their results showthat the silver dif- 
fusion coefficient can be represented by 

D = 2 x  10-6 exp(- -29965/RT)  (31) 

and implies that extensive diffusive transport can 
occur below Tg. 

It is possible to calculate the diffusion coef- 
ficient for palladium in Pda2Sils glass at Tg from 
Equation 5 utilizing the v* value obtained from 
ACp at Tg, Eh value obtained by the earlier analy- 
sis, taking 7 as unity and taking a* to be the atomic 
diameter. Such a calculation yields a value for D 
at Tg (648K) of 1.57 x 10 -is cm 2 sec -1 for Pd 
diffusion in Pds2Sil8. This compares with a value 
of 1.57 x 10 -16 cm 2 sec -1 obtained for the dif- 
fusion of radioactive silver at the temperature 
(648K) in the Pd81Si19 glass, derived from 
Equation 31. The slower rate of silver diffusion is 
understandable since the Goldschmidt radius of 
Ag + ion (1.13A) is greater than that of Pd 4+ ion 
(0.65 A). It should, however, be remarked that the 
temperature dependence of D (Equation 3 I) is dif- 
ficult to explain on the basis of the free volume 
theory. According to the postulates of the free 
volume theory and the hole theory, a relative free 
volume characteristic of the glass transition 
temperature Tg is frozen in at all temperatures 
below Tg. Hence the exponential term in Equation 
5 should in fact be constant for all temperatures 
lower than Tg. The temperature dependence of D 
will then be solely controlled by the average 
kinetic velocity ff in the pre-exponential term of 
Equation 5. Hence the diffusion coefficient D 
should vary as T 1/2, contrary to the experimental 
observation [39]. 

Diffusion in metallic glasses is in urgent need of 
more extensive investigation. 

6.4. Hole energy in relation to formation 
and stability of metallic glasses 

A characteristic feature of good glass formers is 
the strong temperature dependence of viscosity as 
represented by the Doolittle equation (Equation 3) 
and this is primarily determined by the relative 

free volume fT. This in turn depends on the magni- 
tude of hole formation energy E h as represented 
by Equation 23. Materials with a high value o fE  h 
should therefore be easy glass formers. 

It has been observed that for non-metallic 
liquids, the ratio of the energy of evaporation 
(AEvap) to the activation energy for viscous flow 
(E,,ise) is close to 2,5 [11]. HoweveL for metallic 
materials this ratio is in range of 8 to 25. Since 
ions and not neutral atoms are responsible for 
viscous flow in liquid metals, Eyring suggested that 
the quantity 

Evis / \ratom / 

where rio n and ratom are the ionic and atomic 
radii respectively, is a good measure for comparing 
metallic and non-metallic materials. He gave 
reasons for supporting this quantity to be constant 
and showed that its value is indeed always in the 
range 3 to 4. The physical reality underlying 
Eyring's suggestion is that the activation energy 
for viscous flow is nearly the energy for hole 
formation and AEva p is a measure of the cohesive 
energy of the liquid. In general, therefore, a high 
latent heat of evaporation should imply greater 
energy of hole formation. 

The above observation leads us to the concept 
of reduced melting temperature, Te, suggested by 
Cohen and Tumbull [40]. T~ is given by 

Tf = kTm/hv  (33) 

where k and hv are the Boltzmann constant and 
heat of evaporation per atom, respectively. It was 
suggested that a low value of Te corresponds to a 
high glass-forming tendency. The general obser- 
vation that many metallic glasses are either based 
on eutectic alloys or transition metals can be 
explained in terms of Tt. Eutectic alloys have low 
Tf by virtue of low Tm while transition metals 
have high values of hv leading to a decrease in Te. 
From the discussion of the previous paragraph it 
was concluded that a high value for Eh results 
when the latent heat of evaporation is high. Hence 
materials with a high value of Eh would also 
have a low value of Tf and be easy glass formers. 
Thus, the present approach in terms of Eh is 
consistent with the empirical finding of Cohen 
and Turnbull [40]. 

The formation of alloy glasses has been attri- 
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buted to a number of other physically quite 
distinct considerations, ranging from crude space- 
filling criteria to 'electronic energy considerations 
[41-46] .  A frequent explanation is based on the 
existence of local short-range order arising out of 
stronger unlike-neighbour bonds [44]. This view is 
in consonance with the present arguments since 
creation of a hole in locally ordered regions would 
require greater energy for hole formation than in 
disordered (i.e. chemically random) regions. 

Further, the time for crystallization of a small 
fraction of liquid has been shown to be directly 
proportional to the viscosity [47]. From Equations 

3 and 23 it can be inferred that the viscosity varies 
approximately as exp [exp(Er,/RT)]. Hence, the 
time for the crystallization of a small volume is 
directly and strongly dependent on Ell. High 
values of Eh delay crystallization effectively and 
reduce the critical cooling rate for glass formation. 

The essential conclusion that materials with 
high value for E h are the easy glass formers is 
supported further by the data of Fig. 3. Pdo.775 
Cu0.o6Sio. 16 5 and Pdo.82Sio. xs are known to be 
among the easiest glass formers [5]. Theoretical 
calculations show that the critical cooling rate 
required for the production of a Au0.77Geo.13 
Si0.o94 glass is three to four orders of  magnitude 
greater than the rates for palladium-based glasses 
[10,48] .  

In general, all factors which promote glass 
formation and raise Tg also enhance the stability 
of a glass. The prime requisite for easy formation 
and retention of glassy alloys appears to be a high 
cohesive energy which is reflected in the high 
value of energy for hole formation. 

6.5. Crystal vacancies and free volume 
theory 

When a vacancy migrates in a metallic lattice, that 
is, during self-diffusion in a crystal, it is generally 
found that the activation energy for migration, 
Era, does not differ greatly from the formation 
energy of vacancies, E~, and this is true for a range 
of metals. Yet in a metallic glass, Era is estimated 
to be as small as 0.35 E~ to 0.1 E~ [4, 49].  The dif- 
ference between high Era in a crystal and low Era 
in a glass is evidently to be attributed to the looser 
packing of atoms in the glass: a different way of 
putting this is to assert that (even though in this 
paper we have made calculations on the basis that 
a majority of the holes in a glass are in a fairly 
narrow size range) the total free volume in a glass 

is widely dispersed throughout the structure. A 
crystal would be in a equivalent state if the 
vacancies it contains cease to be sharply localized 
and become distributed over a group of atoms. Is 
there any evidence that this can happen and, if and 
when it does, does Em drop correspondingly? We 
might call this potential transition to a diffuse 
vacancy structure, the "free volume transition". 

A suggestion to this effect derives from a 
simulation experiment in which bubbles on a soap 
solution represent' a two-dimensional close-packed 
metal. Such a bubble raft can in effect be "heated' 
by subjecting the solution to mechanical vibration 
[50]. When that is done, it is found that as the 
"temperature" rises, any missing bubble sites, or 
vacancies, in the raft become progressively dis- 
tributed. This is particularly pronounced when 
several vacancies are grouped close together. If this 
two-dimensional simulation has any resemblance 
to three-dimensional reality, it would suggest that 
one might expect to find a free volume transition 
near the melting temperature, if in that region the 
vacancy concentration is high enough to lead to a 
frequent close grouping of several vacancies. 
Kraftmakher and Strelkov [51] present evidence 
for vacancy concentrations approaching 0.01 in 
some refractory metals (though its validity is 
disputed), but there is no evidence of enhanced 
diffusion rates in this temperature range, as might 
be expected if Em were to decrease as a result of 
a volume transition. It seems that for a free 
volume transition to appear, vacancy concentra- 
tions higher than 0.01 are needed, as well as high 
temperatures. This, it seems, can in fact happen as 
a consequence of radiation damage in a metal. 
During bombardment by energetic nucleons such 
as neutrons, displacement cascades are produced 
by the primary bombarding particle, i.e. regions 
are formed from which interstitials are transported 
outwards, leaving a vacancy-rich region at the 
cascade centre [52]. Such vacancy concentrations 
can collapse and form dislocation loops, and the 
kinetics of this process can be analysed in terms of 
an instantaneous diffusion coefficient [53, 54]. It 
is true that a cascade is briefly heated to a high 
temperature, but this temperature burst decays 
in a time much too short to assist significantly the 
vacancy transport process. When this is allowed 
for, one finds that in several metals, the vacancies 
segregate to dislocation loops (the "cascade col- 
lapse") at a modest temperature much faster than 
can be explained in terms of the normal mobility 
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of the vacancies. Bullough and Eyre [53, 54] 
calculate that when vacancies are present in a 
concentration of the order of 10%, then the mi- 
gration energy Em is effectively reduced to about 
half its normal value. 

It seems, on the basis of this detailed calculation, 
that really high vacancy concentrations lead to 
migration characteristics similar to th0se in met- 
allic glasses, and this must be due to a free volume 
transformation, i.e. increased diffuseness or relax- 
ation of vacancy structures, under these circum- 
stances, even without the aid of temperatures close 
to the melting-point. This conclusion is quite 
separate from the hotly debated question of 
whether isolated vacancies in metals are or are not 
highly relaxed (i.e. diffuse in structure). 

There is also evidence that in a non-metal, 
wiistite (FeOx), a grouping of vacancies can lead 
to anomalously high diffusion rates [55]. A recent 
paper by Gorecki [56] is.of interest in the present 
connection. Gorecki assembles extensive exper- 
imental evidence to show, more conclusively than 
did earlier authors, that the formation energy, EF, 
for vacancies in a wide range of crystalline metals 
(A1, A2 and A3 structures) is closely proportional 
to the bonding energy (i.e. heat of vaporization), 
the absolute melting temperature and the heat of 
fusion per mole. The constants of proportionality 
are 19.2 cal (deg tool) -1 and 1.272 respectively. 
These empirical f'mdings (which are of interest in 
the light of our finding that EF for a hole in a 
metallic glass is proportional to Tg (Equation 30)) 
are then combined by Gorecki [56] with some 
theoretical analyses by Kraftmakher [51 ] to 
estimate a vacancy concentration at the melting 
temperature of ~0.004 for several metals. From 
the relationship of EF to heat of fusion he calcu- 
lates the fraction of holes in the molten metal near 
T M and estimates this at 0.13. He deduces the 
value of this fraction by two independent methods: 
(1) from the experimental change in volume in a 
crystal when one vacancy is formed, and (2) from 
the observed volume increase on melting. He 
secures good agreement by the two methods of 
calculation. This again suggests that vacancies in 
crystals and holes in liquids can be regarded as 
similar entities. 

Finally, Gorecki [56] suggests that metals 
melt when the vacancy concentration approaches 
0.003, and the concentration then jumps by a 
factor of 30 to 40. Others, working through com- 
puter simulation [57, 58], have recently proposed 
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that melting is a consequence of a critical dislo- 
cation density. It will be most interesting to see 
whether any theoretical basis can be discovered 
for the suggestion that melting results from the 
establishment of a critical vacancy concentration. 

7. Conclusions 
The present investigation clearly brings out the 
adequacy of the free volume theories, originally 
developed for explaining the behaviour of polymer 
and inorganic glasses, for interpreting the thermal 
and transport properties of metallic glasses. An 
analysis of the available experimental data per- 
taining to the changes in the specific heat and 
thermal expansion at the glass transition tempera- 
ture, together with the temperature dependence 
of the viscosity of highly undercooled metallic 
melts, results in a valuable insight into the mechan- 
ism of transport in the glassy and liquid states of 
the alloys. The following conclusions are reached:" 

(1) The temperature dependence of the viscosity 
of metallic melts can be accurately represented by 
the Doolittle equation. Such a representation 
becomes physically meaningful only if the relative 
free volume is calculated from an expression for 
the number of holes that includes the ratio of the 
volume of a hole to the volume per atom in the 
liquid at absolute temperature. Such an expression 
can be arrived at by evaluating the entropy of 
mixing of holes and atoms with due consideration 
of the volume fraction (and not mole fraction) of 
holes and atoms. 

(2) The relative free volume at the glass transi- 
tion temperature was found to vary from one 
metallic glass to another. However, the ratio of the 
relative free volume at the glass transition tempera- 
ture to that at the melting point was found to be 
roughly constant. 

(3) The hole formation energies in palladium, 
platinum and gold-based glasses, evaluated from 
changes in thermal properties at the glass tran- 
sition temperature and temperature dependence 
of viscosity of undercooled melts, vary linearly 
with the glass transition temperature. 

(4) In each alloy glass the critical hole volume 
and size are nearly equal to those of the largest ion 
in its highest state of ionization. In accordance 
with theoretical predictions, transport in the melt 
and glass is controlled by the movement of these 
ions and not the neutral atoms. 

(5) It is argued that a high energy for hole 
formation is a necessary condition for easy glass 



f o r m a t i o n .  This  obse rva t ion  is in  c o n f o r m i t y  w i t h  

several empir ica l  cr i ter ia  previous ly  deve loped  for  

exp la in ing  the  ease o f  glass f o r m a t i o n .  
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